
Apple2000

Apple2000 ii

COLLABORATORS

TITLE :

Apple2000

ACTION NAME DATE SIGNATURE

WRITTEN BY February 2, 2023

REVISION HISTORY

NUMBER DATE DESCRIPTION NAME

Apple2000 iii

Contents

1 Apple2000 1

1.1 Apple 2000 . 1

1.2 Introduction . 2

1.3 Requirements . 2

1.4 Description . 3

1.5 Why An Apple][Emulator? . 3

1.6 Running the Emulation . 4

1.7 Loading/Saving Disks/Files . 5

1.8 Transferring Apple Files/Disks/ROMs . 6

1.9 Paddle/Joystick Emulation . 7

1.10 Tech Notes . 8

1.11 Planned Improvements . 9

1.12 What About EMPLANT? . 10

1.13 About the Author . 10

1.14 Payment . 10

1.15 Credits . 12

Apple2000 1 / 13

Chapter 1

Apple2000

1.1 Apple 2000

APPLE 2000
The premier Apple][emulator for the Amiga

by
Kevin Kralian

Copyright © 1994, Patents Pending
All Rights Reserved

Introduction

ABOUT

Requirements

CREDITS

Description

Why An Apple][Emulator?

Running the Emulation

Loading/Saving Disks/Files

Transferring Apple Files/Disks/ROMs

Paddle/Joystick Emulation

Apple2000 2 / 13

Tech Notes

Planned Improvements

Payment

What About EMPLANT?

1.2 Introduction

This program is freely distributable, as long as this instruction ←↩
file is

kept with the program, and no modifications are made to my program or
instructions.

This program is also SHAREWARE (well, more accurately, Tech-Ware).
Payment is not mandatory, however, donating to me useful, enabling
technical material will result in me creating other emulations...

click here for more info

Standard Disclaimer: This program is AS IS; use it at your own ←↩
risk! I

assume no responsibility if this program or its use should cause something
disastrous to happen or kill you.

I may be contacted at "Kevin_Kralian@sacbbx.com"

This program uses "ReqTools.library", Copyright © by Nico François.

1.3 Requirements

REQUIREMENTS:

o Amiga computer with Kickstart 2.0 or newer (3.0+ still untested)
o A 68020+ CPU. Emulation WILL NOT WORK on a 68000 system at this time.
o About 900k free RAM (preferably most of it FAST RAM)
o ReqTools.library by Nico François
o Apple][ROM image & disk controller ROM image

(called _APPLE.ROM and _DISK.ROM)

Recommended:
o A two-button joystick (to emulate the Apple’s two-button joystick)
o A 68030 at ~25MHz (for full speed 1 MHz emulation)

Apple2000 3 / 13

1.4 Description

DESCRIPTION:

"Apple 2000" is the premier Apple][emulator for the Amiga computer. At
its current level it accurately emulates a 64K Apple][+, including:

o 6502 CPU
o ALL video modes (Text, LoRes, HiRes, Mixed modes, etc)
o 16k RAM card (64k computer)
o 5¼" disk drive (via disk images)
o Two button joystick
o Keyboard
o Sound

The emulation also runs in a completely system friendly manner,
multitasking properly with other programs. The two main goals were speed
and accuracy. This was accomplished by hand coding the emulator in 100%
machine language, optimization via instruction cycle analysis, and
painstaking attention to Apple hardware details.

I feel confident that this is the fastest, most complete Apple][emulator
available for the Amiga computer (commercial, public domain, or
otherwise). Some of the highlights of my emulation:

o Apple 2000 video emulation is the most accurate around:
- There is no "dithering" of the 16 Lo-Res colors.
- The text supports inverse and flashing characters.
- Two consecutive color pixels are drawn as white (as the Apple does).
- There are no missing, skipped, or fat vertical lines on Hi-Res gfx.

o Apple 2000 disk drive emulation supports loading of "DDD" Apple disk
archives from any Amiga device (no home made archive format or
conversions required).

o Apple 2000 disk drive emulation also saves disk images in compressed
"DDD" format automatically.

o Apple 2000 emulation is able to instantly load and run Apple
executable files from any Amiga device (better than a real Apple; no
’disk booting’ required!).

1.5 Why An Apple][Emulator?

REASONS/WHY AN APPLE][EMULATOR?

Good question! This is my first attempt at a large scale 68000 assembly
program and I had nothing else in particular to write. Of course, I could
always have tried to write a game or demo, however the point of this
project was to learn 680x0 and more about the Amiga Operating Aystem. I
did not want to delve into the hardware specifics of the Amiga (yet), such
as taking over the copper, blitter, etc. An Apple][emulator was the
perfect task.

Why the Apple][? Sentimental reasons. It’s the computer I grew up with
and learned to program on. Since I have a fundamental understanding of
the Apple and because there aren’t any other useable Apple emulators out

Apple2000 4 / 13

there (I’ve seen 5 or 6), the task called to me. I wanted to be able to
play all of my favorite games that I grew up with. Yes, they certainly
are not cutting edge as far as the graphics and sound goes, but they
certainly are playable! And I can overlook the cosmetics for some good
gameplay (i.e, just like people appreciate classic cars or oldies music).
Plus I wanted all of my friends to be able to play all of those great
forgotten games...the classics! The original CASTLE WOLFENSTEIN,
CHOPLIFTER, KARATEKA and CARMEN SANDIEGO. How many other multitasking
versions of JUNGLE HUNT or ROBOTRON 2084 can you play while downloading a
program? By writing this one emulator, the entire Amiga community is
suddenly presented with over 10,000 (now multitasking) Apple][programs
we wouldn’t have otherwise been able to use (or play).

After letting the idea stew in my head for 6 months, and much apparent
rambling to my friends (who so nicely encouraged me by saying, "What? YOU
write an emulator? And in C? UGH!"), I began coding. One month later, I
brought my first creation over to a friends house to see how it worked on
his system. After starting it up, we sat there. 30 seconds later we were
still sitting there, looking at a white screen. Eventually, we watched as
each little white character s-l-o-w-l-y was replaced by a black space.
Two minutes later, after getting bored of waiting for it to finish
clearing the screen, we gave up and played 2-player LEMMINGS. I knew the
only way I was going to be able to make this program ’practical’ was to do
it in assembly.

I finally bought DevPac 3. After writing a program to bounce 65,535
colored pixels around a screen, I felt ready and experienced. I began
converting my routines for my emulator into assembly code. Almost two
years later (and after rewriting most of my emulation 10 times) my
emulator has finally matured enough to go out into the cold and brutal
world. Here it is, ready to be challenged by thousands of Apple programs
I have never even heard of, and ready to do its damndest to run them all!

1.6 Running the Emulation

RUNNING THE EMULATION

Make sure "ReqTools.library" is in your libs: directory and place
"Apple2000", "_APPLE.ROM", and "_DISK.ROM" all in the same directory.
Then from the CLI/Shell, CD to its directory and type "Apple2000".

Now, assuming a little common sense (press the "OK" button on the
window!), you will see a black screen with "Apple 2000" in a title bar at
the top, and the words "Apple][" immediately below it. Congratulations,
you are now using an Apple][computer. The Apple is trying to boot a
disk.

I will assume you have a little knowledge on using an Apple][. Here are
some of the pertinant keys:

KEY Function
------------ --
DEL Apple "Reset" key.
ctrl-DEL Similar to "Ctrl-Open Apple-Reset" on][e,][c,][gs.

Forces reboot, even if reset vectors have been changed.

Apple2000 5 / 13

RAmiga-Q Quit the emulator (after verification).
RAmiga-L Load Apple disk image or executable into the emulator.
RAmiga-S Save Apple disk image.
L-ALT (Like Open-Apple on][e) Represents Apple Paddle

Button #0
R-ALT (Like Closed-Apple on][e) Represents Apple Paddle

Button #1
(Alt keys do not affect other keystrokes to emulator)

^
| Arrow keys patched to be like Apple][e,][c,][gs.

<--+--> (Note: Apple][+ had no Up/Down arrows, and most
| older programs won’t handle them as expected.)
v

NumPad only:
8 Trim Apple joystick center position in respective

4 5 6 directions.
2 "5" will reset it to default (of 127,127).

1.7 Loading/Saving Disks/Files

LOADING DISKS/FILES

Once the Apple is running, you’ll probably want to load an Apple disk or
executable. Here’s how: at ANY time during emulation, feel free to press
Right-Amiga-L to bring up the Load File requester. From this requester
you may load Apple 5¼" disk images or executable files. Simply navigate
to wherever the files are kept and load the file/disk image you want.
Apple 2000 recognizes several types of load files:

o Filenames with a <xxx> suffix are Dalton Disk Disintegrator archives
(DDD was a common disk compression util for the Apple, similar to DMS
for the Amiga) and the emulator will automatically decompress them!

o Filenames with a .DISK suffix are raw disk images with no compression.
They are capable of storing images of non-DOS and copy-protected
disks, but are about 220k in size. This format is primarily due to
early testing of the emulator and will be phased out (as well as any
references to it).

o Filenames with a .PROG suffix are executable files; these are single
files that were runnable from Apple DOS 3.3/ProDos and did not require
any disk access thereafter. These files now do not even require
booting any Apple disk and are simply loaded into the appropriate
Apple memory areas and started instantly (quicker and easier than a
real Apple!).

After loading a disk image (compressed or not), the emulator will ask you
if you want to ’boot’ the disk. If you choose not to, you have
effectively just ’put the disk in the drive’ (useful when you need to
insert ’Disk 2’). On the other hand, loading an executable Apple file
does not give you any choices and immediately runs it. This has all been
designed to keep the emulator as clean and simple as possible in terms of
starting and running Apple programs for the non Apple-literate user.

Apple2000 6 / 13

Keep in mind, loading a disk image is the same thing as inserting the disk
into the Apple drive. It will STAY there until you replace it with
another disk (or some program erases that disk). Even after you load and
run several executable Apple programs, hitting Ctrl-DEL (rebooting the
Apple) will boot up the last DISK IMAGE you loaded (if any). This can be
confusing if you don’t know whats going on (i.e, after finishing playing
MS. PACMAN and reseting the Apple, why is MUSIC CONSTRUCTION SET loading?
Because the disk is still in the drive from before).

SAVING DISK IMAGES

Pressing Right-Amiga-S will bring up a requester to save a disk image.
Disk images are automatically compressed when saved. Navigate your way
through the directories (as you normally would), and enter a filename
(like normal). The only rule here is that the filename MUST end with a >
character (greater than sign). This is because the original DDD archives
did not have any special identifying header, but merely relied on that
trailing character (actually, DDD uses <###> where the #’s represent the
number of sectors the file takes, but my emulation ignores that value and
just checks for that last character).

NOTE: Ultimately, these archives will be saved with an Apple ProDOS
header so that files can be transferred right back to real Apples and
decompressed. However, due to a lack of resources, I have not yet been
able to implement this ’identical header’ and currently disk-images will
not transfer back to an Apple. This will be incorporated later.

1.8 Transferring Apple Files/Disks/ROMs

TRANSFERRING APPLE FILES

To get an executable binary file from a real Apple to the Amiga is quite
simple. Copy the file to a ProDOS disk (using a utility such as Copy][+)
and then transfer it via null-modem (or however you want) to the Amiga.
Make sure to append a .PROG to the end of the file name so that it’s
recognized by the emulator.

NOTE: At the moment, I require the conversion to ProDOS simply because
ProDOS puts a standard header in front of the file that my emulator needs.
I’ll eventually allow files to be transferred directly from DOS 3.3.

TRANSFERRING APPLE DISKS

Only UNPROTECTED standard 16 sector Apple disks are currently useable.
This eliminates copy protected software. Simply run Dalton Disk
Disintegrator (do not use version 2.0! It has a bug! Use version 2.1)
and use it to compress the disk into a file. Then, convert it to ProDOS
and transfer it to an Amiga (as described in "Transferring Apple Files"
above). Once on the Amiga, change the name to end in <xxx> because ProDOS
strips out the <> characters.

NOTE: Like with files, eventually this will not require the intermediate

Apple2000 7 / 13

ProDOS conversion either.

TRANSFERRING APPLE ROMS

The Apple emulator, being true to form, requires the actual Apple ROM data
in order for the Apple to do anything. The standard Apple ROMs in use
were the ’AppleSoft ROMs that contained AppleSoft BASIC, the assembly
language monitor, and autobooting code. So I suggest that you obtain the
same ROM if you would like the same compatibility. The ROM image can be
obtained by booting an Apple][or][+ with DOS 3.3, then typing:

BSAVE BASICROM,A$D000,L$2FFF

to save it to disk. Also, the disk controller Rom is saved by typing:

BSAVE DISKROM,A$C600,L$00FF

Incidentally, the main ROM image is on Apple’s "DOS 3.3 System Master"
disk, called FPBASIC (which may be used instead). After saving these
images to disk, use your favorite terminal software and a null modem cable
(or real modems or whatever you like) to transfer these files to the
Amiga. Once transferred to the Amiga, give these files the proper names
and place them in the same directory as the Apple2000 executable.

Theoretically, you can use the ROMs obtained from an Apple][clone (i.e,
Franklin Ace, PineApple, etc.), but keep in mind that these ROMs were not
100% compatible (but were quite close). This would effectively make my
emulation a "Franklin Ace Emulator". :-) However, you CANNOT use the ROM
images from an Apple][e,][c, or][gs (maybe eventually...we’ll see)!

Once on the Amiga, the filenames MUST be _APPLE.ROM and _DISK.ROM

1.9 Paddle/Joystick Emulation

PADDLE/JOYSTICK EMULATION

The Apple][commonly uses either 2 paddles, a joystick, or a graphics
tablet (like a free-floating joystick). My emulation covers all bases.
The paddles and graphics tablet emulation are handled with the mouse and
the joystick emulation is handled with the joystick.

The F9 key toggles between the two and displays your choice at the top of
the screen.

For the Joystick:
The Apple][uses (unfortunately) the variable ’all-over-the-place’
PC-type of joystick (with two buttons). This evolved from the earlier
Apple days when paddles where common (PADDLE - a turning knob with a
button, useful for playing PONG). Anybody having used these joysticks
know the frustration of having to constantly ’center’ or ’trim’ the
joystick for different programs. The emulation takes this into account
also.

Apple2000 8 / 13

The Amiga ’Atari-style’ joystick in the normal joystick port is used
(preferably, a true 2-button joystick). The center position defaults to
the optimal center positions on an Apple (127 X 127). However, different
games expect different centering values, which can be trimmed with the
2, 4, 6, & 8 keys on the numeric keypad (ONLY, see

Running Emulation
).

For example, if you start CHOPLIFTER and your character drifts towards the
left, press the "6" key to center the joystick more towards the right
until your character no longer drifts!

If you do not have a two button joystick, you have two choices. Go buy
one, or else just use the Right-ALT key in lieu of the second button (by
the way, the two ALT keys work great for pinball games like RASTER
BLASTER).

For the Paddles/Graphics Tablet:
Some of the older Apple games were designed to be used with paddles, not
joysticks. This is noticable in games (APPLE GALAXIAN) as in when you
release the joystick, your ship automatically moves back towards the
center point on the screen. This is exactly what would happen on a real
Apple with a joystick. You need to use the paddle emulation here. Push
F9, the top of the screen should say "Mouse", and now the mouse controls
this stuff. The horizontal movement controls Paddle #0, and vertical
movement controls Paddle #1. If you have a game that needs independant
control of each paddle, you are out of luck (I’ll get to that later).
Programs designed for graphics tablets (KOALA PAD) or un-centered
joysticks work great in this mode also, i.e, FANTAVISION, MISSILE COMMAND
games, and most other free floating cursor control programs work ideally.
The mouse works just like you would expect here.

1.10 Tech Notes

TECH NOTES

Though the emulation is 100% system friendly and running in a standard
intuition screen, it has to do a few tricks with copperlists in order to
achieve the Apple mixed screen graphics. The side effect of this
technique is that when you pull down screens in the foreground to reveal
the Apple emulator in the background, there will be times that the display
looks garbled and/or is flashing. This is normal...nothing is wrong. If
you don’t like it, then don’t pull screens down in front of the emulation!
(A man tells a doctor, "It hurts when I do this...", and the doctor tells
him "Then don’t do this.")

My emulation uses innovative 6502 emulation routines, which are
significantly faster than any other 6502 emulations that are available on
the Amiga (commercial or otherwise). My Apple emulation also has the most
accurate graphics emulation I have witnessed. As complex as this is,
speed is always maintained by extensive use of complex lookup tables
(several hundred K worth).

The ONLY graphics glitch is that the Hi-Res graphics screens do not fill

Apple2000 9 / 13

in the entire display width. That is, they leave a half-inch black border
on each side of the display. Why? Because the Apple Hi-Res screen has a
horizontal resolution of 280 pixels, and the Amiga’s display has a minimum
resolution of 320. Trying to stretch this display by leaving an empty
pixel after every 7 pixels or drawing every 7th pixel twice, results in a
highly distorted and uneven image. The Text modes and LoRes modes still
use the entire screen width (to maintain aspect ratio). This slightly
narrow display is only noticeable in the ’mixed Graphics/Text’ mode, where
text will be a little wider than the graphics above it.

Also regarding Text and Graphics (but not a glitch, it’s an improvement)
is the fact that mixed Graphics and Text on the old Apple][’s used to
cause the text to be fringed with green and purple instead of being solid
white. This fringing has absolutely no purpose, but is a mere artifact of
the Apple video circuity. My emulation cleans it up with crisp & clean
text output all the time (does anybody have any complaints?). Apple
finally cleaned this up with the Apple][gs and its RGB output (but
introduced a couple other graphic glitches), so I believe my clean Text
display is desirable.

Some Apple programs use "unimplemented" 6502 instructions. These are
instructions that are not official, but partially decode into doing a
particular function (as discovered by many unorthodox programmers). My
emulation does not support ANY unimplemented instructions, and will simply
break upon hitting any of those instructions (with Apple][software, I
have seen very few programs that do this).

1.11 Planned Improvements

PLANNED IMPROVEMENTS

Currently, emulation speed is pretty much as fast as possible under the
current ’interpreted’ method. A speedup of about 3X is possible if I do
’pre-interpretation’ which essentially converts 6502 code to native 680x0
code ahead of time, then running it at full speed. However, this comes at
a cost of excessive memory usage (I estimate using about 2 megs for the
64k Apple emulation). This could be considered if enough people are
interested (this would be the final speed boost required for the A1200
owners if they have enough memory!), but is of low priority for now.

A 68000 version is easily possible, but emulation is so slow at that point
(games are frustratingly unplayable), that I haven’t bothered to do one.

I plan to add Apple printer & serial emulation (and redirection). This
way you could redirect Apple printer output to an Amiga file or to an
Epson emulator (to print Epson output to any Amiga Prefs printer). Or
emulate the Apple serial card with an Amiga Modem, etc.

I plan to (eventually) upgrade the entire emulation to Apple][e /][c
status. This includes Apple "Double-Hi-Res" graphics, 128k RAM, and
80-column text.

I have thought about writing a ProDOS driver allowing the Apple to access
Amiga devices as an Apple hard drive (is anybody using the emulator this
seriously?).

Apple2000 10 / 13

I might tackle using a real 5¼" disk drive if enough people want it.

1.12 What About EMPLANT?

WHAT ABOUT EMPLANT?

My emulator, "Apple 2000" was (p)reviewed in Amiga Computing (Issue 71,
March 94), inside a larger review for the Emplant card (there’s even a
screenshot where you can read my title bar, Apple 2000!). For all intents
and purposes, the review makes it appear as if this program was written
by, owned by, and coming soon from Utilities Unlimited, makers of the
Emplant card (regardless, the reviewer loved it, noting that this was the
fastest 6502 emulation he has seen).

At several World Of Commodore shows, Jim Drew showed my early versions of
"Apple 2000" to crowds of people during his presentations of his Emplant
card. A friend even has a video-tape of Jim loading up and showing my
emulator to a crowd when I asked, "What other emulators are you doing?"
(before he knew who I was) at WOC in Pasadena, 1993.

To set the record straight, I did send Utilities Unlimited several early
exclusive ’evaluation’ versions of my emulator to see if they were
interested in purchasing it (for their Emplant package). But this program
(Apple 2000) is not a part of the Emplant package! Utilities Unlimited
was in no way involved with the development of this program. There was
never an agreement made over ownership rights. Several proposals were
submitted by me as per Jim Drew’s requests for exclusive rights, but an
agreement was never reached.

The positive side effect of this is that you may use the Apple 2000
program without having to spend >$300!

1.13 About the Author

ABOUT THE AUTHOR

"Apple 2000" was written by Kevin Kralian over the course of two years.
He has spent time in the US Marine Corps ’finding himself’. He is now a
full time college student, preparing to transfer to CSU, Sacramento. He
has over 10 years of programming experience, including ADA, BASIC, C,
Pascal, 6502 and 680x0 assembly. Programming interests focus on
performance programming, including games and emulation. Career goals
include firefighter (!?) and computer programmer.

He may be contacted at "Kevin_Kralian@sacbbx.com"

1.14 Payment

Apple2000 11 / 13

"PAYMENT" FOR THIS PROGRAM

Though this program is being distributed freely as shareware, I do not
expect monetary payment. My original intentions were simply to have my
program be ’used’ by the Amiga community, and I still feel the same way.
I’ve worked long and hard on this program and the most rewarding thing to
me know would be to simply know people are enjoying it!

However, what I WOULD appreciate would be any technical references for any
computer/hardware/platform. Let me explain...

Many improvements in the Apple emulator are dependant upon me finding
Apple technical reference material (i.e, unimplemented instructions,
serial/parallel support, ProDOS harddrive support, etc). If you would
like to see these features implemented, the biggest thing you can do is
send me any tech material that could be helpful (i.e, "Whats Where In The
Apple][: An Atlas", "Beneath Apple DOS", "Beneath Apple ProDOS", etc).

Also, some ideas for my next emulator include: Atari VCS (2600), GameBoy,
Nintendo, Atari 400/800 and Commodore 64/128. Even though there are a few
C-64 emulators out there, many people have urged me to do one "the right
way" (ground has been broken and the C-64 emulation is underway already).
I tend to want to do the old Atari VCS or Gameboy emulation. HOWEVER, in
order to do this, I need the tech information that I cannot publically
obtain.

Do YOU want these game machines to be emulated (I do)? If you are one of
those priviledged people who might have been involved in developing
software for any of these machines or somehow have any tech info on these
machines, please send me any and all tech information. *** I WILL ***
make an emulator of these machines when I have enough tech information to
do so. But I need your help.

I am open to any suggestions, comments, or feedback. Let me know how the
emulator works for you. Please let me know of anything that does not work
(that works on a real Apple][), and I will do my best to correct the
problem. I am also interested in obtaining any Apple][programs people
may have to test under my emulation.

Anybody interested please contact me at "Kevin_Kralian@sacbbx.com"

Particular things I’m looking for:

o Whats Where in the Apple][: An Atlas to the Apple computer
o Beneath Apple DOS
o Beneath Apple ProDOS
o Apple Super Serial Card / Parallel card manuals
o AmigaDOS Programmers Reference
o Any 2.0+ Amiga ROM Kernal Manuals (I’m using 1.3)
o ANY kind of tech info on Gameboy, Nintendo, or the old Atari VCS

(there once was an Apple][card to program the Atari. Anybody
have it?)

o Any and all Apple][programs.
o Any old Apple][hardware (I use a][gs; its too different from][+)
o Any responses, reactions, suggestions, etc. on my emulation.

Apple2000 12 / 13

o etc...

1.15 Credits

CREDITS

I owe lots of thanks to lots of people.

Thank you my dearest JoAnnaBear for being so supportive of me and this
project over the last two years, and for not going crazy over my many
hours of "techno-babble", but just patiently smiling back as if you
understood me. :-)

Thank you Robbie for all your inspiration and encouragement. And thanks
for your ice-cream sandwiches, twisted sense of humor, brainstorm
sessions, and hundreds of hours worth of second-hand smoke (cough cough).
Thank you for the book "Amiga Machine Language Programming Guide" - the
very first 680x0 assembly book I’ve seen (blech!). By the way, this book
was due back at the library in 1989. How are your games "To Sir With
Love" and "The Piano" coming along? Oh yeah...and thanks for cleaning up
and converting my docs to AmigaGuide format for me :-)

Thank you Bill, for taking your family and moving far away (just
kidding!).

Thanks to those incredible guys at Computer Cafe. I appreciate how you let
me use your various machines for debugging and testing during the
development of my emulation. Without your help, I would have never been
able to work out the ’040 bugs, nor have seen my emulation running on a
28" monitor with cool 24 bit backgrounds.

Thanks to Carmen Rizzolo, the computer artist extraordinaire! Your
original artwork for my previous programs are utterly amazing. Without
people like Carmen, where would we get cool 3D Star Trek and telephone
objects?

Thanks to Will, the only intelligent Mac owner I know. It was great to
share ideas on high performance 6502 emulation with the 680x0. Have you
finished your Mac version of your Apple][emulator yet? Thanks for that
’half’ of the "Inside the Apple //e" manual. Did you ever find pages
1-110?

Thank you Nico François, for your contribution to the Amiga community.
ReqTools is a very polished piece of work, and I know that your work has
saved me (and many others) hours of work trying to "recreate the wheel".
(Reqtools.library is Copyright © by Nico François).

Thanks to the many helpful people on the Internet, for helping me through
many obscure programming and debugging challenges.

Thanks to Apple Computer and Steve Wozniak for creating the original Apple
][computer. And congratulations to Apple Computer for knowing how to
market their computers and becoming a large, successful company. Maybe
Commodore can learn a few things from you before they drive themselves out
of business?

Apple2000 13 / 13

Thanks to ’Dalton’, for his "Dalton’s Disk Disintegrator" (DDD) program on
the Apple][. My (de)compression routines were based on his routines and
attempt to compress data in an identical, compatible way.

And finally, thanks to the many people I do not have space to mention, and
to all of the Amiga users who have made the Amiga scene as wonderful as it
is.

	Apple2000
	Apple 2000
	Introduction
	Requirements
	Description
	Why An Apple][Emulator?
	Running the Emulation
	Loading/Saving Disks/Files
	Transferring Apple Files/Disks/ROMs
	Paddle/Joystick Emulation
	Tech Notes
	Planned Improvements
	What About EMPLANT?
	About the Author
	Payment
	Credits

